
Doing is a quantum leap from imagining.

It is often stated that of all the theories proposed in this century, the silliest is quantum theory. In fact, some say that the only thing that quantum theory has going for it is that it is unquestionably correct.

If anybody says he can think about quantum physics without getting giddy, that only shows he has not understood the first thing about them.

Quantum physics tells us that nothing that is observed is unaffected by the observer. That statement, from science, holds an enormous and powerful insight. It means that everyone sees a different truth, because everyone is creating what they see.

Doing is a quantum leap from imagining.
Thinking about swimming isn't much like actually getting in the water. Actually getting in the water can take your breath away. The defense force inside of us wants us to be cautious, to stay away from anything as intense as a new kind of action. Its job is to protect us, and it categorically avoids anything resembling danger. But it's often wrong. Anything worth doing is worth doing too soon.

Your notions of friendship are new to me;
I believe every man is born with his quantum, and he cannot give to one without robbing another. I very well know to whom I would give the first place in my friendship, but they are not in the way, I am condemned to another scene, and therefore I distribute it in pennyworths to those about me, and who displease me least, and should do the same to my fellow prisoners if I were condemned to a jail.

But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.

One needn't be a crank to miss the scientific boat.
The very paragon of genius, Albert Einstein, couldn't be persuaded to give quantum physics his unreserved endorsement. Here is Einstein's most frequently paraphrased statement of dissatisfaction with the theory: Quantum mechanics is very impressive. But an inner voice tells me that it is not yet the real thing. The theory yields a lot, but it hardly brings us any closer to the secret of the Old One. In any case I am convinced that He doesn't play dice.

The mathematics of quantum mechanics very accurately describes how our universe works. And it tells us our reality is continually branching into different possibilities, just like a coral.

Everything that can happen, does. That's quantum mechanics. But this does not mean everything happens. The rest of physics is about describing what can happen and what can't.

Einstein comes along and says, space and time can warp and curve, that's what gravity is. Now string theory comes along and says, yes, gravity, quantum mechanics, electromagnetism  all together in one package, but only if the universe has more dimensions than the ones that we see.

I just felt that you can't have a character fall in love so madly as they did in the last movie and not finish it off, understand it, get some closure. That's why the movie is called 'Quantum of Solace'  that's exactly what he's looking for.

If quantum mechanics hasn't profoundly shocked you, you haven't understood it yet.

Quantum computation is... a distinctively new way of harnessing nature... It will be the first technology that allows useful tasks to be performed in collaboration between parallel universes.

God does not play dice with the universe.

Scientists, therefore, are responsible for their research, not only intellectually but also morally. This responsibility has become an important issue in many of today's sciences, but especially so in physics, in which the results of quantum mechanics and relativity theory have opened up two very different paths for physicists to pursue. They may lead us  to put it in extreme terms  to the Buddha or to the Bomb, and it is up to each of us to decide which path to take.

The very nature of the quantum theory .
.. forces us to regard the spacetime coordination and the claim of causality, the union of which characterizes the classical theories, as complementary but exclusive features of the description, symbolizing the idealization of observation and description, respectively.

In fact, the mere act of opening the box will determine the state of the cat, although in this case there were three determinate states the cat could be in: these being Alive, Dead, and Bloody Furious.

Because of recent improvements in the accuracy of theoretical predictions based on large scale ab initio quantum mechanical calculations, meaningful comparisons between theoretical and experimental findings have become possible.

When I moved to Stanford I began to pursue the line of research I have been following ever since, namely trying to understand the larger implications of fractional quantum hall discovery.

According to the standard model billions of years ago some little quantum fluctuation, perhaps a slightly lower density of matter, maybe right where we're sitting right now, caused our galaxy to start collapsing around here.

Similarly, another famous little quantum fluctuation that programs you is the exact configuration of your DNA.

I believe that the quantum of our knowledge will increase considerably in the coming years and that scientists will continue to be amongst the brave voices speaking out.

The scientists often have more unfettered imaginations than current philosophers do. Relativity theory came as a complete surprise to philosophers, and so did quantum mechanics, and so did other things.

Well, I've always thought that my career was in England, really.
I used to do more in the theatre, and I felt that I should be there. It's not far is it? It's amazing the way that special FX have taken a quantum leap in what they're capable of doing.

It is difficult for me to believe that quantum mechanics, working very well for currently practical setups, will nevertheless fail badly with improvements in counter efficiency.

The field of quantum valence fluctuations was another older interest which became much more active during this period, partly as a consequence of my own efforts.

But to do it professionally is a quantum leap difference and my father had to be persuaded by these kind of Ivy League professors that I should go to the Yale Drama School, another one of the stories in there.

I mean, we're really making a quantum change in our relationship to the plant world with genetic modification.

Physics is really figuring out how to discover new things that are counterintuitive, like quantum mechanics. It's really counterintuitive.

Old Newtonian physics claimed that things have an objective reality separate from our perception of them. Quantum physics, and particularly Heisenberg's Uncertainty Principle, reveal that, as our perception of an object changes, the object itself literally changes.

Most of what Einstein said and did has no direct impact on what anybody reads in the Bible. Special relativity, his work in quantum mechanics, nobody even knows or cares. Where Einstein really affects the Bible is the fact that general relativity is the organizing principle for the Big Bang.

Trying to understand the way nature works involves a most terrible test of human reasoning ability. It involves subtle trickery, beautiful tightropes of logic on which one has to walk in order not to make a mistake in predicting what will happen. The quantum mechanical and the relativity ideas are examples of this.

The extreme weakness of quantum gravitational effects now poses some philosophical problems; maybe nature is trying to tell us something new here: maybe we should not try to quantize gravity.

It is a curious historical fact that modern quantum mechanics began with two quite different mathematical formulations: the differential equation of Schroedinger and the matrix algebra of Heisenberg. The two apparently dissimilar approaches were proved to be mathematically equivalent.

Because the theory of quantum mechanics could explain all of chemistry and the various properties of substances, it was a tremendous success. But still there was the problem of the interaction of light and matter.

There were several possible solutions of the difficulty of classical electrodynamics, any one of which might serve as a good starting point to the solution of the difficulties of quantum electrodynamics.

With the exception of gravitation and radioactivity, all of the phenomena known to physicists and chemists in 1911 have their ultimate explanation in the laws of quantum electrodynamics.

We are the product of quantum fluctuations in the very early universe.

The Planck satellite may detect the imprint of the gravitational waves predicted by inflation. This would be quantum gravity written across the sky.

The possibilities that are suggested in quantum physics tell us that everything that we're looking at may not be in fact there, so the underlying nature of being is weird.

Quantum physics thus reveals a basic oneness of the universe.

The mathematical framework of quantum theory has passed countless successful tests and is now universally accepted as a consistent and accurate description of all atomic phenomena.

The verbal interpretation, on the other hand, i.
e. the metaphysics of quantum physics, is on far less solid ground. In fact, in more than forty years physicists have not been able to provide a clear metaphysical model.

But I don't actually adopt the point of view that our subjective impression of free will, which is a kind of indeterminacy behavior, comes from quantum mechanical indeterminacy.

If someone says that he can think or talk about quantum physics without becoming dizzy, that shows only that he has not understood anything whatever about it.

If we look at the way the universe behaves, quantum mechanics gives us fundamental, unavoidable indeterminacy, so that alternative histories of the universe can be assigned probability.

In fact any experiment that measures a quantum effect is one in which the quantum effect is aligned with the behavior of some heavy, macroscopic object; that's how we measure it.

Now, what that means is that there is fundamental indeterminacy from quantum mechanics, but besides that there are other sources of effective indeterminacy.

The chaos can act as a magnifier of quantum fluctuations so that they can produce sizable effects in the world around us. But we know that that can happen often.

If you start any large theory, such as quantum mechanics, plate tectonics, evolution, it takes about 40 years for mainstream science to come around. Gaia has been going for only 30 years or so.
What is the best quotes for quantum?
Try the Top 10 list of quantum quotes