Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country.

— David Hilbert

## The most delighting David Hilbert quotes that are life-changing and eye-opening

Mathematics is a game played according to certain simple rules with meaningless marks on paper.

Sometimes it happens that a man's circle of horizon becomes smaller and smaller, and as the radius approaches zero it concentrates on one point. And then that becomes his point of view.

Some people have got a mental horizon of radius zero and call it their point of view.

If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proven?

### Begin with the simplest examples.

If one were to bring ten of the wisest men in the world together and ask them what was the most stupid thing in existence, they would not be able to discover anything so stupid as astrology.

The art of doing mathematics consists in finding that special case which contains all the germs of generality.

A mathematical problem should be difficult in order to entice us, yet not completely inaccessible, lest it mock at our efforts. It should be to us a guide post on the mazy paths to hidden truths, and ultimately a reminder of our pleasure in the successful solution.

The further a mathematical theory is developed, the more harmoniously and uniformly does its construction proceed, and unsuspected relations are disclosed between hitherto separated branches of the science.

One must be able to say at all times--instead of points, straight lines, and planes--tables, chairs, and beer mugs

Galileo was no idiot. Only an idiot could believe that science requires martyrdom - that may be necessary in religion, but in time a scientific result will establish itself.

### One hears a lot of talk about the hostility between scientists and engineers.

I don't believe in any such thing. In fact I am quite certain it is untrue... There cannot possibly be anything in it because neither side has anything to do with the other.

### No other question has ever moved so profoundly the spirit of man;

no other idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of clarification than that of the infinite.

However unapproachable these problems may seem to us and however helpless we stand before them, we have, nevertheless, the firm conviction that their solution must follow by a finite number of purely logical processes.

Mathematical science is in my opinion an indivisible whole, an organism whose vitality is conditioned upon the connection of its parts.

### Besides it is an error to believe that rigour is the enemy of simplicity.

On the contrary we find it confirmed by numerous examples that the rigorous method is at the same time the simpler and the more easily comprehended. The very effort for rigor forces us to find out simpler methods of proof.

### Geometry is the most complete science.

The arithmetical symbols are written diagrams and the geometrical figures are graphic formulas.

Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical.

I have tried to avoid long numerical computations, thereby following Riemann's postulate that proofs should be given through ideas and not voluminous computations.

Is mathematics doomed to suffer the same fate as other sciences that have split into separate branches?... Mathematics is, in my opinion, an indivisible whole... May the new century bring with it ingenious champions and many zealous and enthusiastic disciples.

Geometry, like arithmetic, requires for its logical development only a small number of simple, fundamental principles. These fundamental principles are called the axioms of geometry.

How thoroughly it is ingrained in mathematical science that every real advance goes hand in hand with the invention of sharper tools and simpler methods which, at the same time, assist in understanding earlier theories and in casting aside some more complicated developments.

The tool which serves as intermediary between theory and practice, between thought and observation, is mathematics; it is mathematics which builds the linking bridges and gives the ever more reliable forms.

Keep computations to the lowest level of the multiplication table.

The infinite! No other question has ever moved so profoundly the spirit of man.

Indignant reply to the blatent sex discrimination expressed in a colleague's opposition when Hilbert proposed appointing Emmy Noether as the first woman professor at their university.

No one shall expel us from the paradise that Cantor has created for us.

Every kind of science, if it has only reached a certain degree of maturity, automatically becomes a part of mathematics.

One can measure the importance of a scientific work by the number of earlier publications rendered superfluous by it.

As long as a branch of science offers an abundance of problems, so long it is alive; a lack of problems foreshadows extinction or the cessation of independent development.

I do not see that the sex of the candidate is an argument against her admission as a Privatdozent. After all, the Senate is not a bathhouse. Objecting to sex discrimination being the reason for rejection of Emmy Noether's application to join the faculty at the University of Gottingen.

We do not master a scientific theory until we have shelled and completely prised free its mathematical kernel.

### No one shall expel us from the paradise which Cantor has created for us.

Expressing the importance of Cantor's set theory in the development of mathematics.

For us there is no ignorabimus, and in my opinion none whatever in natural science. In opposition to the foolish ignorabimus our slogan shall be: "We must know - we will know!"

I didn't work especially hard at mathematics at school, because I knew that's what I'd be doing later.

We ought not to believe those who today, adopting a philosophical air and with a tone of superiority, prophesy the decline of culter and are content with the unknowable in a self-satisfied way. For us there is no unknowable, and in my opinion there is also non whatsoever for the natural sciences. In place of this foolish unknowable, let our watchword on the contrary be: we must know - we shall know.

Before beginning [to try to prove Fermat's Last Theorem] I should have to put in three years of intensive study, and I haven't that much time to squander on a probable failure.

An old French mathematician said: "A mathematical theory is not to be considered complete until you have made it so clear that you can explain it to the first man whom you meet on the street." This clearness and ease of comprehension, here insisted on for a mathematical theory, I should still more demand for a mathematical problem if it is to be perfect; for what is clear and easily comprehended attracts, the complicated repels us.

A mathematical theory is not to be considered complete until you have made it so clear that you can explain it to the first man whom you meet on the street.

Wir mussen wissen. Wir werden wissen. We must know. We will know. Inscribed on his tomb in Gilttingen.

He who seeks for methods without having a definite problem in mind seeks in the most part in vain.

Who of us would not be glad to lift the veil behind which the future lies hidden; to cast a glance at the next advances of our science and at the secrets of its development during future centuries? What particular goals will there be toward which the leading mathematical spirits of coming generations will strive? What new methods and new facts in the wide and rich field of mathematical thought will the new centuries disclose?

[On Cantor's work:] The finest product of mathematical genius and one of the supreme achievements of purely intellectual human activity.