K. Eric Drexler is an American engineer and nanotechnology theorist. He is best known for his 1986 book Engines of Creation, which popularized the potential of molecular nanotechnology. Drexler is also the founder of the Foresight Institute, a non-profit organization focused on the research and development of advanced nanotechnologies.
What is the most famous quote by K. Eric Drexler ?
In thinking about nanotechnology today, what's most important is understanding where it leads, what nanotechnology will look like after we reach the assembler breakthrough.
— K. Eric Drexler
What can you learn from K. Eric Drexler (Life Lessons)
- K. Eric Drexler was an American engineer who was a pioneer in the field of nanotechnology. He helped to popularize the concept of molecular nanotechnology and its potential applications. His work has shown us the potential of nanotechnology and the importance of understanding the implications of new technologies before they are widely adopted.
- Drexler's work has also demonstrated the importance of taking a holistic approach to technological development, considering the implications of technology on society and the environment. He has also highlighted the need for responsible governance of emerging technologies.
- Finally, Drexler's work has shown us the importance of collaboration between different disciplines in order to develop new technologies. He has also highlighted the need for an interdisciplinary approach to research and development in order
The most controversy K. Eric Drexler quotes that are guaranted to improve your brain
Following is a list of the best K. Eric Drexler quotes, including various K. Eric Drexler inspirational quotes, and other famous sayings by K. Eric Drexler.
My work at MIT had focused on what we could build in space once we had inexpensive space transportation and industrial facilities in orbit. And this led to various sorts of work in space development.
I've encountered a lot of people who sound like critics but very few who have substantive criticisms. There is a lot of skepticism, but it seems to be more a matter of inertia than it is of people having some real reason for thinking something else.
And that because the moving parts are a million times smaller than the ones we're familiar with, they move a million times faster, just as a smaller tuning fork produces a higher pitch than a large one.
Today we have big, crude instruments guided by intelligent surgeons, and we have little, stupid molecules of drugs that get dumped into the body, diffuse around and interfere with things as best they can. At present, medicine is unable to heal anything.
The basic parts, the start-up molecules, can be supplied in abundance and don't have to be made by some elaborate process. That immediately makes things simpler.
On the molecular scale, you find it's reasonable to have a machine that does a million steps per second, a mechanical system that works at computer speeds.
It's a lot easier to see, at least in some cases, what the long-term limits of the possible will be, because they depend on natural law. But it's much harder to see just what path we will follow in heading toward those limits.
If you take all the factories in the world today, they could make all the parts necessary to build more factories like themselves. So, in a sense, we have a self-replicating industrial system today, but it would take a tremendous effort to copy what we already have.
Nanotechnology quotes by K. Eric Drexler
Scientists study physical things, then describe them;
engineers describe physical things, then build them.
In a sense, artificial intelligence will be the ultimate tool because it will help us build all possible tools.
Any powerful technology can be abused.
After realizing that we would eventually be able to build molecular machines that could arrange atoms to form virtually any pattern that we wanted, I saw that an awful lot of consequences followed from that.
Nature draws no line between living and nonliving.
But if we can manage it so people don't have things forced on them that they don't want, I think there's every reason to believe things can settle out in a situation that is recognizably better than the one we're stuck in today.
An international race in the relevant technologies is getting under way at this point, not necessarily with an understanding of where that race leads in the long run, but strongly motivated by the short-term payoffs.
Likewise nanotechnology will, once it gets under way, depend on the tools we have then and our ability to use them, and not on the steps that got us there.
Quotations by K. Eric Drexler that are futurism and innovation
I had been impressed by the fact that biological systems were based on molecular machines and that we were learning to design and build these sorts of things.
...Local prohibitions cannot block advances in military and commercial technology... Democratic movements for local restraint can only restrain the world's democracies, not the world as a whole.
Protein engineering is a technology of molecular machines - of molecular machines that are part of replicators - and so it comes from an area that already raises some of the issues that nanotechnology will raise.